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Homework 1 - SOLUTIONS 
Due Monday, January 21, 2013 

 
Notes:  Please email me your solutions for these problems (in order) as a single Word or PDF document.  If you do 
a problem on paper by hand, please scan it in and paste it into the document (although I would prefer it typed!). 

 
1. (5 pts) I would like to get to know you and your interests so that I can provide the best 

possible educational experience for you in this course. Please describe yourself – your 
general background, education, interests, and goals. What specifically would you be 
interested in learning about computer vision? Are there any application areas that you 
are particularly interested in?  Are you currently doing thesis research that might 
benefit from computer vision?  Also if possible, please paste in a photo of yourself so I 
can start to learn names! 
 
 

2. (10 pts) Show (by hand) that (AB)T = BTAT.   Use as an example the matrices 
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Solution:  Multiplying AB we get 
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The right hand side is 
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So they are equal. 
 

3. (15 pts) Consider the symmetric matrix 
a b

b c

 
  
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C .  Calculate by hand 

a. The determinant of the matrix, |C|. 
b. The inverse of the matrix, C-1. 
c. The trace of the matrix. 
d. The eigenvalues of the matrix. 

 
Solution: 

(a) |C| = ac – b2 
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(b) I learned the “cofactor” method to find an inverse: 





















nnn

n

AA

A

AAA









1

12

12111

1

)det(

1

A
A , 

where Ajk is the cofactor of ajk.  For a 2x2 matrix this is  
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You can (and should) verify that C-1C = I. 
 

(c) The trace is just the sum of the diagonal elements; so it is just a+c. 
 

(d) Eigenvalues and eigenvectors satisfy the equation C x = v x, where x is a 2x1 eigenvector 
and v is the corresponding (scalar) eigenvalue. We can solve for the eigenvalues and 
eigenvectors by writing (C – v I)x = 0, and so we find v such that det(C – v I) = 0.   
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Solving the quadratic equation for v, we get 
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Note that the quantity in the square root is always ≥ 0; thus the eigenvalues are real 
numbers (which is always true for a symmetric matrix). 
 
 

4. (15 pts) Consider a rotation about the X axis of 1.1 radians, followed by a rotation 
about the Y axis of -0.5 radians, followed by a rotation about the Z axis by 0.1 radians 
(this order of rotations is called the “XYZ fixed angles” convention). 
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a. Give the 3x3 rotation matrix corresponding to the rotations above. 
b. Since the rotation matrix is “orthonormal” matrix (i.e., a square matrix whose 

rows and columns are orthogonal unit vectors), its inverse is equal to its 
transpose.  Show this. 

c. Give the 3x3 rotation matrix where the same rotations described in part (a) are 
done in the opposite order; i.e., first a rotation about the Z axis of by 0.1 radians, 
followed by a rotation about the Y axis of -0.5 radians, followed by a rotation 
about the X axis by 1.1 radians (this convention is called “ZYX fixed angles”).  
The matrix should be different. 

 
Solution: 

(a) The rotation matrix for a rotation about the X axis is  
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The combined rotation matrix is R = RZ(0.1) RY(-0.5) RX(1.1) . 
We can do this in Matlab: 
 
cx = cos(1.1);    sx = sin(1.1); 
Rx = [1 0 0; 0 cx -sx; 0 sx cx]; 
cy = cos(-0.5);    sy = sin(-0.5); 
Ry = [cy 0 sy; 0 1 0; -sy 0 cy]; 
cz = cos(0.1);    sz = sin(0.1); 
Rz = [cz -sz 0; sz cz 0; 0 0 1]; 
R = Rz*Ry*Rx 
 
R = 
    0.8732   -0.4704   -0.1274 
    0.0876    0.4087   -0.9085 
    0.4794    0.7821    0.3981 

 
(b) Using the matrix above,  
 
>> R*R' 
 
ans = 
    1.0000    0.0000         0 
    0.0000    1.0000    0.0000 
         0    0.0000    1.0000 
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The product yields the identity matrix, so RT must be the inverse of R.  In general: Let iq be the 

ith column of matrix Q.  If Q is orthonormal, then the dot product of any pair of columns is zero 

(the dot product of a column with itself is one); i.e., T
i j ijq q .  Note that T

iq  is the ith row of 

matrix QT.  So the ijth entry of QT Q is T
i j ijq q .  Thus QT Q = I, meaning that QT = Q-1. 

 
(c) Doing the rotations in the opposite order yields a different rotation matrix: 
 
>> R = Rx*Ry*Rz 
 
R = 

    0.3981   -0.7821   -0.4794 
    0.8650    0.4940   -0.0876 
    0.3054   -0.3798    0.8732 
 

5. (15 pts) Consider the “cameraman.tif” image in Matlab.  Assume that the camera that 
took this image can be modeled by a pinhole camera, with square pixels, and the optical 
center is at the center of the image.  Assume that the tall building in the distance is 40 
meters wide, and the distance to the building is 2 km. What is the focal length of the 
camera, and the field of view? 

 
Solution: 

The building is about x = 12 pixels wide in the image.  Using similar triangles: 
x X

f Z

 


 
f = (12 pixels)*(2000 m)/(40 m) = 600 pixels

 

 
We find the field of view knowing that the height of the image is H = 256 pixels: 

   tan / 2 / 2 /H f 
 

This yields  = 0.4204 radians = 24.085 degrees.  (The vertical field of view is the same because 
the image width is also 256 pixels.) 
 
 
6. (15 pts) Using the parameters found in the previous problem, draw a “full moon” as a 

white circle in the “cameraman.tif” image1.  The unit vector direction to the moon is 
(ux,uy,uz) = (0.0984,  -0.1476,  0.9841) in camera coordinates, where we use the usual 
convention that +X is to the right, +Y is down, and +Z is forward.  Give the code you 
used, and the image.  

 
Solution: 

                                                 
1 You will have to look up the angular size of the moon as seen from earth. 
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To find the location of the moon in the image, we take the unit vector u as given above, and scale 
it so that its “z” component is equal to the focal length f.  This places the tip of the vector v on 
the image plane, as shown in the figure. 
 

 
Since f is in units of pixels, v is also in units of pixels.  So the first two elements of v give the 
pixel location in the image.  We still need to offset by the center of the image. 
 
Matlab code: 
 
u = [0.0984;  -0.1476;  0.9841]; 
f = 600;            % Focal length in pixels 
v = u*(f/u(3));     % Scale u such that v(3) = f 
x0 = v(1) + 128     % Offset to center of image 
y0 = v(2) + 128 

 
The center of the moon is at (x,y) location (187.99, 38.01). To draw the moon as a white circle, 
we need to calculate the diameter in the image. 

The full moon as viewed from earth has an apparent diameter of about  = 0.5 degrees (30 arc 
minutes).  If placed at the center of the image, fr /)2/tan(  , where r is the radius of the 

moon in pixels.  This comes out to be r = 2.618 pixels. 
 
Matlab code to draw the moon: 
 
% Size of moon 
da = 0.5 * pi/180;      % angular diameter of moon 
w2 = f*tan(da/2)       % Half width in pixels 
 
for x=1:size(I,2) 
    for y=1:size(I,1) 
        if (x-x0)^2 + (y-y0)^2 <= w2^2 
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            I(y,x) = 255; 
        end 
    end 
end 

 

 
 
 
7. (25 pts) A camera observes the following 7 points, defined in WORLD coordinates 

(meters): 
    6.8158    7.8493    9.9579    8.8219    9.5890   13.2690   10.8082 
  -35.1954  -36.1723  -25.2799  -38.3767  -28.8402  -58.0988  -48.8146 
   43.0640   43.7815   40.1151   46.6153   42.2858   59.1422   56.1475 

 
The pose of the camera with respect to the world is given by the following: 

 Translation of camera origin with respect to the world is (10,-25,40) in meters. 
 Orientation of the camera with respect to the world is given by the angles 

provided in problem #4.  
 

(a) Compute the homogeneous transformation matrix, HC
W , assuming that the 

convention being used is “XYZ fixed angles”. 
(b) Transform the 7 points from WORLD coordinates to CAMERA coordinates. 
(c) Project the 7 points in CAMERA coordinates onto an image.  Use the following 
parameters for the camera.  Size of the image is 256 columns (width) by 170 rows 
(height).  Center of projection is at the image center.  Effective focal length is 400 pixels.  
Show the resulting image (hint: it should be a familiar object). 

 
Solution: 
 
(a) H_c_w is 
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    0.8732   -0.4704   -0.1274   10.0000 
    0.0876    0.4087   -0.9085  -25.0000 
    0.4794    0.7821    0.3981   40.0000 
         0         0         0    1.0000 
 
H_w_c 
    0.8732    0.0876    0.4794  -25.7187 
   -0.4704    0.4087    0.7821  -16.3633 
   -0.1274   -0.9085    0.3981  -37.3603 
         0         0         0    1.0000 

 
(b) Points in camera coordinates: 
P_c 
   -2.2047   -1.0439   -0.0061    0.9709    0.4005    9.1319    6.3608 
   -0.2723   -0.5966   -0.0046    0.2614    0.4117   -0.0932    2.5165 
   10.8875   11.9290    0.3055   14.9357    4.4510   37.2725   27.9596 
    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000 

 
(c) Image: 

 
3D plot: 

 
 
Matlab code: 
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clear all       % good idea to do these at the beginning of each program 
close all 
  
T = [10; -25; 40];  % Translation of camera origin in world 
thetaXYZ = [1.1; -0.5; 0.1];    % XYZ angles in radians (camera to world) 
  
% Construct rotation matrix (camera to world) 
cx = cos(thetaXYZ(1));    sx = sin(thetaXYZ(1)); 
cy = cos(thetaXYZ(2));    sy = sin(thetaXYZ(2)); 
cz = cos(thetaXYZ(3));    sz = sin(thetaXYZ(3)); 
  
Rx = [1   0  0;  0  cx -sx;  0  sx cx]; 
Ry = [cy  0 sy;  0   1   0; -sy 0  cy]; 
Rz = [cz -sz 0;  sz  cz  0;  0  0   1]; 
R = Rz*Ry*Rx; 
  
% Construct homogeneous transformation matrix, camera to world 
H_c_w = [ R  T; 0 0 0 1 ]; 
disp('H_c_w'), disp(H_c_w); 
  
% Compute the homogeneous transformation matrix, world to camera   
H_w_c = inv(H_c_w); 
disp('H_w_c'), disp(H_w_c); 
  
% Here are the points in world coordinates (we append a 1 in the fourth 
% element so as to make them homogeneous coordinates) 
P_w = [ 
    6.8158    7.8493    9.9579    8.8219    9.5890   13.2690   10.8082; 
  -35.1954  -36.1723  -25.2799  -38.3767  -28.8402  -58.0988  -48.8146; 
   43.0640   43.7815   40.1151   46.6153   42.2858   59.1422   56.1475; 
    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000]; 
     
% Transform points from world to camera coordinates 
P_c = H_w_c * P_w; 
disp('P_c'), disp(P_c); 
  
% Here are the given parameters of the camera: 
H = 170;        % height of image in pixels 
W = 256;        % width of image in pixels 
f = 400;        % focal length in pixels 
cx = W/2;       % optical center 
cy = H/2; 
  
% Project the points onto the image using the perspective projection 
% equations. 
P_img = zeros(2,7); 
for i=1:7 
    P_img(1,i) = f*P_c(1,i)/P_c(3,i) + cx; 
    P_img(2,i) = f*P_c(2,i)/P_c(3,i) + cy; 
end 
  
disp('P_img'), disp(P_img); 
  
% Create a blank image and put dots at those locations 
I = zeros(H,W); 
for i=1:7 
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    r = round(P_img(2,i));     % row is y 
    c = round(P_img(1,i));     % col is x 
    I(r-1:r+1,c-1:c+1) = 255; 
end 
  
figure, imshow(I, []); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% We can also display in 3D. 
figure, plot3(P_c(1,:), P_c(2,:), P_c(3,:), '.'); 
hold on 
plot3(P_w(1,:), P_w(2,:), P_w(3,:), '+'); 
xlabel('x'), ylabel('y'), zlabel('z'); 
axis equal 
axis vis3d 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
 


